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Abstract 

 

This deliverable documents the work done on analysing whether it is possible to realize parts of the 
ABC4Trust reference implementation on mobile platforms. 

The main contributions are three prototypes: A version of the User side of the reference implementation 
ported to the Android platform, an application that enables an NFC-enabled Android device to emulate a 
smart card in the reference implementation and finally an implementation of the User side of 
Microsoft’s U-Prove in JavaScript for use in web applications. 

This document describes the prototypes and how they were developed and analyses the performance and 
security of them.
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Foreword Executive Summary 

One of the main objectives of the ABC4Trust project is to develop a reference implementation of a 
Privacy-ABC architecture. The reference implementation has been developed with laptop and desktop 
computers in mind as the User’s platform, and the contribution of this deliverable is an analysis of the 
feasibility of realizing parts of the reference implementation on mobile devices. The question of 
feasibility is relevant since mobile devices have limited performance compared to laptops and 
desktops. 

We have focused on the User-side of the reference implementation, since it in most use cases will be 
the only entity for which it makes sense to use a mobile device, and it turns out that it is indeed 
possible to get an acceptable performance by simply moving the User-side of the reference 
implementation to a smart phone. 

The deliverable also presents and analyses two additional prototypes: One that enables a NFC-
enabled Android device to emulate the smart cards used in the reference implementation and another 
that is an implementation of Microsoft’s U-Prove in JavaScript for use of privacy preserving ABCs in 
web applications. 

This intended audience of this document is anyone interested in what work the ABC4Trust project has 
done on mobile platforms, and privacy on mobile devices in general. Note that the document does not 
contain a discussion of what a Privacy-ABC technology is, neither does it contain a full description of 
the ABC4Trust reference implementation, so readers not familiar with these should consult the 
deliverables D2.1 and D4.2 respectively. 
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1  Introduction 

The ABC4Trust reference implementation (see D4.2) has been developed with computers and laptops 
in mind as the intended platform of the User. However, during recent years, Users have embraced 
smart phones and tablets on massive scale, and expect the same functionality on these devices as they 
have on their laptops and desktops. In particular they expect the same privacy features so it is natural 
to consider how the ABC4Trust reference implementation can be used on mobile devices. 

Another reason why we consider integration with mobile devices is that the User is carrying a smart 
phone at all times, and can potentially use it as an identity hub, keeping credentials on the device and 
use it to authenticate towards different verifiers while at all time staying in full control of what 
information is revealed to whom. The mobility of the device opens for a range of new use cases not 
available to laptops and desktops since the User is not limited to the physical restrictions of a laptops 
and desktops, and can e.g. use her smart phone to prove that she is old enough to buy alcohol at a shop 
or that she is allowed access to a building, both without revealing any other information than 
absolutely necessary. 

However, mobile devices do not offer the same computational performance as laptops and desktops, 
and since the cryptographic computations done when using Privacy-ABCs are computationally 
intensive, we need to analyse whether it is possible to use mobile devices as a platform for Privacy-
ABC’s and still get an acceptable performance. This analysis has been conducted by implementing 
several prototypes where mobile devices are used in setups involving Privacy-ABCs. We also discuss 
what security issues should be considered when working on a mobile platform. 

In chapter 2 we describe how the ABC4Trust reference implementation, which was developed for 
laptop or desktop computers, has been ported to the Android platform. We describe what issues were 
faced and analyse the performance and security of the implementation. 

Some smart phones contain a NFC-chip, and can use it to emulate a smart card. In chapter 3 we 
describe how we used this feature to make an Android phone emulate the smart cards that were used in 
the reference implementation. 

The smart phone world is very fragmented and there are several widely used platforms, most notably 
Android, iOS, Windows Phone and BlackBerry. It is, however, possible to create applications that can 
run on all these platforms by implementing them as web applications in JavaScript. This also has the 
added benefit that the User does not have to install anything on her device, but can execute the 
application in a web browser. In chapter 4 we describe how we have implemented a Privacy-ABC 
technology, Microsoft’s U-Prove [PZ13], where the application running on the User’s device is 
developed in JavaScript and is running in a web browser. 
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2  Reference implementation on Android 

2.1  Introduction 

In order to analyse the possibility of realising parts of the reference implementation on smartphone 
platforms, we have implemented the part of the reference implementation that is supposed to run on 
the User’s device as an app for the Android platform. We focus on the User’s device since the only 
entity using a mobile device in a setup involving Privacy-ABC technologies in most use cases will be 
the User. However, the implementation could easily be adapted to make the mobile device act as other 
entities, e.g. Issuer or Verifier, should this be relevant in some use cases. The functionality of the 
implementation is discussed in section 2.2. 

The Android platform was chosen over other smart phone platforms for convenience − the reference 
implementation is developed in Java, which can also be used to create Android applications, so 
realising the reference implementation on the Android platform did not involve writing a lot of new 
code. However, the Android platform is slightly different from the Java platform, so the task mainly 
consisted of making sure that the situations where the differences between the Android API and the 
Java API could cause trouble was addressed and making sure that the third-party libraries used by the 
reference implementations were available on Android. These issues are explained in more detail in 
section 2.3. 

 
Figure 1: The UI of the demo client application, which is an app for evaluating courses at a university. 
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Successfully porting the reference implementation to the Android platform certainly implies that it is 
possible to integrate the User’s side of the reference implementation on mobile platforms, but a 
remaining question is whether the performance and security model are acceptable in this setup. Mobile 
devices are in general somewhat slower than laptops and desktops, to whom the reference 
implementation was originally intended, so we have performed some benchmarks to see if we can get 
an acceptable performance with the Android version. This is discussed in section 2.4. Further, mobile 
devices are vulnerable to some attacks that are not as significant for laptops and desktops, e.g. the 
possibility of having a device stolen. This is discussed in section 2.5, where we analyse the security 
implications, both of the Android implementation and, more generally, the possibility to create a 
secure implementation of Privacy ABC-technology for mobile devices. 

2.2  Overview of the prototype 

The high-level idea behind the Android implementation is to create an application (ABC4Trust app) 
that stores the User’s credentials and acts as a service for other applications, performing 
authentications on their behalf on demand. 

 

 
Figure 2: The communication flow when performing a presentation. 

The communication flow when performing a presentation is shown in Figure 2. To illustrate it, we will 
run through a demo of an app that enables the User to evaluate a university course he has attended. For 
this purpose, the User uses the ABC4Trust app to prove towards the university, that he is a student at 
the specified course and that he only evaluates the course once. 

1. The User chooses to evaluate a course through an app (Application) (see Figure 1). 
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2. The university (Service provider) needs the User to prove that he possesses a credential 
showing that he is a student at the chosen course, as well as a credential showing that the User 
is a student at the university. Finally the User also needs to present a scope exclusive 
pseudonym to make sure that it is only possible to evaluate the course once. The service 
provider responds with an URL to a policy describing these demands and an URL to a Verifier 
to whom the presentation token should be sent. The connection between the User and the 
Service Provider should be secure (e.g. using SSL), such that the URL cannot be altered in 
transit. 

3. The client application forwards this information to the ABC4Trust app. 
4. If the ABC4Trust app has the needed credentials, it presents the User with a graphical user 

interface (see Figure 3) asking him if he wants to reveal the attributes the service provider 
requests – that is showing that he is a student at the university and is following the course, as 
well as a scope exclusive pseudonym for the course. If the User accepts, the ABC4Trust app 
creates a presentation token containing this information, and sends it to the Verifier, and 
meanwhile the User is presented with another UI showing that this a presentation is currently 
being performed. 

5. If the presentation token is OK, the Verifier sends the revealed attributes to the university 
along with a newly generated session key.  

6. The session key is also send to the ABC4Trust app. 
7. The ABC4Trust app forwards the session key to the client application, which can now 

continue the interaction with the university. 

 
Figure 3: The ABC4Trust app presents the User with a UI showing what information she is about to 

reveal. 
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One of the key ideas behind the original reference implementation is that it should be easy for 
developers to integrate, and this idea is preserved here as the client application’s role is very simple: it 
forwards the received URL’s to the ABC4Trust app and gets a session key in response. 

Starting the ABC4Trust app will show a list of the credentials currently stored on the device as shown 
in Figure 4. 

2.3  Implementation issues 

The reference implementation has been developed in Java, which can also be used to create apps for 
Android, so realising the reference implementation on Android did not involve much additional 
development. It did, however, require some work to make the code workable on Android, since the 
Android API and Java API are not completely similar, and not all third-party libraries available in Java 
are also available on Android. 

 

 
Figure 4: The ABC4Trust app can show the User what credentials are currently stored on the device. 
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One third-party library that caused problems was Java Architecture for XML Binding1 (JAXB), which 
is part of the Java SE platform, but not available on Android. Luckily, we were not the first to face this 
problem, and an unofficial Android version has been made2, which we included in the ABC4Trust 
app. However, Java does not allow you to add classes in a number of packages, for example in the 
javax.xml.* package which is the one used by JAXB, so this unofficial version can not use the same 
package name as JAXB, and some small changes had to be made to the original source code to include 
this library, namely changing the import statements, and repacking the unofficial JAXB such that the 
classes are in another package, for example ae.javax.xml.*. More specifically, statements of the 
form 

 
have to be changed to 

 
The functionality of the unofficial JAXB library is limited, and does for example not allow 
canonicalization of XML because the functionality depends on Apache Xerces3 and Apache 
Santuario4, which are two libraries that are also not officially available on the Android platform. 
Apache Xerces has been unofficially ported5, but Apache Santuario has not. The Java source code for 
this library is, however, available and creating an Android version can be done by simply interpreting 
the Java source code as an Android library. As in the case for the unofficial JAXB library, the package 
names for these two unofficial Android versions had to be renamed. 

Further, file handling is a little bit different in Android, where an application only has access to its 
own internal storage, and each class that needs to access these files needs to know the path to the 
internal storage, which is available by calling getFilesDir() on the applications Context-object6. 
The Context-object is only available from the actual Android application and not from imported 
libraries, so the path has to be distributed to the classes in the reference implementation that needs to 
access files. 

Note that the modifications needed to make the source code of the reference implementation run on 
Android are minimal and mainly involve changing package imports, but the modifications are 
nonetheless necessary, making it impossible to completely reuse the original source code in its current 
state on Android. 

2.4  Performance 

The CPUs and memory in mobile devices are in general slower than the ones in laptops and desktops. 
This could be an issue when implementing privacy ABC technologies on mobile platforms, since these 
technologies involve some rather complicated cryptographic computations. So in order to determine 
whether it is feasible to use mobile devices, we need to check whether this gap in performance is big 
enough to give a notably worse User experience. 

However, our benchmarks show that creating a presentation token on an Android device takes about 6 
seconds when revealing attributes from one credential. In the demo application this is the time from 
the User accepts the presentation policy to the token is sent to the verifier, and for most use cases this 
should be acceptable. 

                                                        
 
1 https://jaxb.java.net/ 
2 http://www.docx4java.org/blog/2012/05/jaxb-can-be-made-to-run-on-android/. This website also contains a 
discussion on why JAXB is not working on Android.  
3 https://xerces.apache.org/ 
4 https://santuario.apache.org/ 
5 https://code.google.com/p/xerces-for-android/ 
6 https://developer.android.com/reference/android/content/Context.html 

import javax.xml.*; 

import ae.javax.xml.*; 
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As discussed in the introduction of this section, the ABC4Trust reference implementation was not 
created with mobile devices in mind, which leaves some room for potential performance 
improvements on mobile platforms. Note also that mobile devices have developed rapidly over the last 
few years, so performance will also depend on the brand and age of your device. 

2.5  Security analysis 

The intended platform for the User in the ABC4Trust reference implementation is a laptop or desktop 
with an attached smart card reader. The User is given a smart card which is used both to store the 
User’s credentials, such that she can use it with any laptop that has the reference implementation 
installed, but an important feature of a smart card is also that it is tamper resistant, meaning that it is 
difficult to extract the key from the smart card. 

In the ABC4Trust app, both keys and credentials are stored in the ABC4Trust app’s internal storage in 
the device’s memory. In the Android security model, this data is only accessible by the app it self, and 
should hence be secure from other apps. However, an adversary with physical access to the device can 
easily extract this data, and if Android’s data encryption is broken, the adversary can retrieve both 
keys and credentials and hence create presentation tokens on behalf of the User. The User herself can 
also use this to share her credentials with other Users. 

In most scenarios the security model where keys and credentials are stored in the device’s memory are 
acceptable, but in high-risk scenarios one could improve the security by utilizing a hardware module 
in the mobile device, for example a SIM card or a TPM-module, for storing the User’s private key. 
However, direct interaction with such hardware modules is in general not available through the 
standard API’s, and the API’s that does allow some access, e.g. Androids KeyStore7, do not support 
the functionality needed for our purpose, so we have not been able to test it nor implement it in the 
prototype. 

                                                        
 
7 https://developer.android.com/reference/java/security/KeyStore.html 
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3  Smart card emulation 

3.1  Introduction 

In the two ABC4Trust pilot projects in Patras and Söderhamn (see D7.1 and D6.1 respectively for 
more details), the Users were equipped with smart cards. In Patras, university students had to present 
their smart card every time they attended a course, and at the end of the semester they were allowed to 
do an anonymous evaluation of the course if their course attendance was high enough. 

In Söderhamn, pupils and teachers at an elementary school used the smart cards to store their personal 
credentials, and using their smart card they could log into a school chat forum from any computer. The 
chat forum had different chat rooms that were only accessible for certain pupils, e.g. of a certain age or 
pupils following a specific course. 

Basically the smart cards in these pilots have two purposes: 

1. To act as a tamper resistant second factor during issuance and presentation, performing 
cryptographic operations involving the User’s private key without revealing it. 

2. For storing the User’s credentials, making her able to perform both issuance and presentations 
from any laptop with a card reader. 

So the reason for using smart cards is both security (1) and better user experience (2). A custom smart 
card application was developed for the pilots by CryptoExperts SAS [BDP12] and deployed on the 
smart cards, which were then handed out to the Users. 

 
Figure 5: The smart card is protected by a password, which the User has to enter when starting the app. 
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Some mobile devices have a Near Communication Field chip (NFC). This chip can be used to 
communicate with other NFC-enabled devices, but it can also be used to interact with smart card 
readers. This allows the mobile device to act as a smart card (known as Smart card emulation). 

Smart cards have a few limitations. They contain CPUs and are able to perform computations on the 
card, but they do not contain a power supply and must use the power from the smart card reader. This 
causes the smart card to have rather limited performance, and the performance bottleneck in the pilot 
projects was in some cases the smart card. Furthermore, the memory of a smart card is limited, which 
is an issue when a User wants to store many credentials on one card. 

A mobile device does not have these limitations. Furthermore, a User is carrying a mobile device with 
her at all time, so using this device instead of requiring her to carry a smart card with her too, will also 
give a better User experience. However, as discussed in section 2.5, a mobile device does not have the 
same security advantages as a smart card, unless a tamper resistant hardware module, for example a 
SIM card (which is actually a smart card) is used. 

 

 
Figure 6: The app only has one User interface, which displays a picture of a smart card and an activity 

LED in the top-right corner. 

As a proof-of-concept, we have implemented a prototype, which is the smart card application, 
ABC4Trust Lite [BDP12], implemented as an Android application, which uses smart card emulation 
to interact with a smart card reader. 
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3.2  Overview of the application 

The idea behind the prototype is to create an application that the User should be able to install on an 
NFC enabled mobile device, and then use this device instead of a smart card. Furthermore, the User 
service running on the laptop with an attached smart card reader should not require any changes, 
allowing the use of mobile devices instead of smart cards in existing systems. 

The application itself is a very simple Android application. When the application is started for the first 
time, the User is requested to create a new virtual smart card. The User is then requested to enter a 
password that is used to encrypt the virtual smart card when it is stored on the mobile device, and 
should be entered every time the application is started as shown in Figure 5. 

When the application is running, the UI displayed in Figure 6 is shown and this is the only UI the User 
is ever presented to. Through the menu in the top right corner, the User can request Info, which causes 
the application to display some information about what is currently stored on the ‘smart card’. 
Through this menu the User can also wipe all information from the smart card. 

 

 
Figure 7: An NFC enables mobile device running the app can communicate with smart card readers that 

support contactless communication. 

When the User wishes to use her mobile device as a smart card, the application is started and the 
mobile device is put on a smart card reader that supports contactless communication (see Figure 7). 
When the application interacts with the smart card reader, the indicator in the top right corner flashes 
green. 
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3.3  Implementation issues 

Smart card emulation has been used on Android by Google’s app Google Wallet8 for quite a while, but 
this feature has only been available through the standard Google API since Android KitKat 4.4. We 
developed the prototype before this was released (in September 2013), and so we had to use the 
alternative Android platform, CyanogenMod9, where smart card emulation was available at the time. 

The concept of the prototype is that the mobile device should be able to be used interchangeably with 
a real smart card in the ABC4Trust reference implementation. This was almost fulfilled, since the 
NFC chip embedded in the Android device, which is used to communicate with the smart card reader, 
does not support extended APDUs (the ability to receive more than 255 bytes from the card reader in 
one response), so in order not to decrease the performance for regular smart cards, the User service has 
to ask the device it is currently communicating with, whether it is an Android device emulating a 
smart card, and if so, not use extended APDUs. 

Even though we had to discard extended APDUs for mobile devices, benchmarks show an increase in 
performance of about a factor six, compared to regular smart cards. 

3.4  Security analysis 

One of the reasons for using smart cards is that they offer tamper resistant storage of credentials and 
keys. As discussed in section 2, the memory of an Android device, where this prototype stores its keys 
and credentials, is not tamper resistant, so the prototype does not have the same security advantages. 

The keys and credentials are encrypted under a password, which the User has to enter when starting 
the app. If the User enters the password incorrect three times, the content of the smart card is deleted. 
However, if the file containing the encrypted virtual smart card data is extracted from the device, an 
adversary could launch an offline attack on the encryption without being limited to three attempts. One 
way to enhance the security could be to encrypt the virtual smart card under a key stored in the 
Android KeyStore, which on some platforms is hardware based. This would allow keys with higher 
entropy than the ones generated using a User’s password, and the key would be protected in tamper 
resistant hardware. 

                                                        
 
8 http://www.google.com/wallet/ 
9 http://www.cyanogenmod.org/ 
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4  Privacy ABC’s in web applications 

4.1  Introduction 

The world of mobile devices is very fragmented in the sense that there are multiple widely used 
platforms, most notably Android, iOS, Windows Phone and Blackberry. A way to create applications 
that can run on all platforms is to implement it as a web application using JavaScript instead of as a 
native application. 

A web application is executed in a web browser, and if implemented in a standardized format, such as 
JavaScript, it is able to run on any device that has a web browser, including smart phones and tablets. 
The downside is that a web application has very limited access to the device’s hardware and memory 
and that the performance is not as good as when running a native application. Furthermore, the web 
application has to be downloaded from some provider, e.g. the Issuer, every time it is needed, giving a 
more complicated security scenario. 

4.2  Overview 

We have created a prototype implementation of Microsoft’s U-Prove [PZ13] in JavaScript, to study 
whether it is feasible to use Privacy ABC technologies with web applications. U-Prove is one of the 
Privacy-ABC technologies used in the ABC4Trust reference implementation, the other being IBM’s 
Identity Mixer10. U-Prove was chosen over Identity Mixer for this prototype because it is simpler and 
has more limited functionality, but it still has the key features of Privacy ABC’s, e.g. selective 
disclosure. 

As in the other prototypes presented in this deliverable, we have focused on the User, since it in many 
use cases is the only entity for which it is relevant to use a mobile device. 

The prototype is able to perform the cryptographic operations needed to get credentials from Issuers 
and use these to create presentation tokens and send them to Verifiers. Note that in the U-Prove 
terminology this is translated into that we have implemented the Prover entity, which is able to receive 
Tokens from Issuers and use these to create Presentation proofs and send them to Verifiers. 

A web application that wishes to use the library first has to import the libraries JavaScript files and 
then create a new Prover-object: 

 
This object can be used to get credentials and create presentation proofs. The following command 
request three tokens (in U-Prove a token can only be used once, so it is practical to issue multiple 
tokens at a time) from an issuer with URL ‘http://127.0.0.1:8080’ with the four attributes 
‘Jonas’, ‘Jensen’, ‘Aarhus’ and ‘Denmark’, and stores them in the browsers local storage under 
the key ‘token1’: 

 
The following command creates a presentation proof based on the credential stored under the key 
‘token1’, revealing attributes 1 and 2, committing to the value of attribute 3, using attribute 4 as a 
pseudonym and ‘ABCD’ as scope. This proof and the token is then sent to a verifier with URL 
‘http://127.0.0.1:8080’.11  

                                                        
 
10 http://www.zurich.ibm.com/idemix/ 
11 For more information about these terms, see the U-Prove specifications at http://www.microsoft.com/u-prove. 

var prover = new Prover(); 

prover.issueToken(‘http://127.0.0.1:8080’,  

[‘Jonas’, ‘Jensen’, ‘Aarhus’, ‘Denmark’], ‘token1’, 3); 
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Note that here the Issuer and Verifier has the same URL, since they in our example are running on the 
same server. This is only the case for this example, and is not a general requirement – they can run on 
different servers. 

The functions described above interact with issuers and verifiers which exposes the functionality of 
Microsoft’s own C# implementation of U-Prove [UPSDK] as web services, as shown in Table 1. 

 

Relative URL Web service description 

/Issuer.asmx/GetParameters Get the Issuer parameters for this Issuer. 

/Issuer.asmx/GetFirstMessage Request first issuance. This request should be sent along 
with the following parameters: 
parameters An array of the desired attributes 

represented as strings. 
noOfTokens The number of tokens the Issuer should 

create. 
 

/Issuer.asmx/GetThirdMessage Request the third issuance. The following parameter 
should be sent along with the request. 
secondMessage The second issuance message as JSON. 
 

/Verifier.asmx/PresentToken Send a presentation proof and token to a verifier. 
token A token encoded as JSON. 
proof A presentation proof encoded as JSON. 
 

Table 1: This table shows the methods of the U-Prove web service. For details about the contents of the 
presentation tokens and proofs and the issuance messages, see the U-Prove documentation. 

4.3  Implementation issues 

The prototype has to perform calculations with arbitrarily large integers, which is not supported in 
JavaScript as standard, so we had to find a library to do this. Most available third-party libraries lack 
important features and proper documentation or are simply buggy, and we ended up choosing JSBN12, 
because it is documented, and because it supported some features that we needed, e.g. elliptic curves 
and conversion to and from Base64 strings. A missing feature is hashing with SHA-256 (JSBN 
supports SHA-1). Again several JavaScript implementations were available, and we ended up using 
one made by Chris Veness13 due to its non-restrictive license (CC by 3.0). We also had to implement a 
few additional features, for example an algorithm for calculating modular square roots. 

A lot of effort was put into making the implementation compatible with Microsoft’s own 
implementation of U-Prove, especially in making sure that hashing is done in the same way. 

                                                        
 
12 http://www-cs-students.stanford.edu/~tjw/jsbn/ 
13 http://www.movable-type.co.uk/scripts/sha256.html 

prover.presentToken('http://127.0.0.1:8080', 'token1', [1,2], [3], 4,  

'pseudo', 'ABCD') 
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4.4  Benchmarks 

The prototype has been used to study whether it is possible to get a descent performance when using 
privacy ABC’s in JavaScript – recall that application in JavaScript are much slower than native 
applications. 

So far only the elliptic curve construction has been tested. This is because one can use smaller key 
sizes when using elliptic curves than when using subgroups of ℤ!. 

For the issuance (Precomputations and Create second message14), a token with four attributes is 
issued. For the presentation proof (Create presentation proof), two of the attributes are disclosed, and 
none is committed. 

 

Device Model CPU Clock Freq. RAM OS 

Laptop MacBook Pro Intel Core i7 2.8 GHz 16 GB OS X 10.8.5 

Android Samsun 
Galaxy Nexus 

ARM Cortex-
A9 

1.2 GHz 1 GB CyanogenMod 
10.2.0 

iPhone iPhone 5 Apple Swift 
Dual Core 

1.3 GHz 1 GB iOS 7.0.3 

Table 2: A list of the devices used in the benchmark. 

Below are some benchmarks on different platforms. Each column represents different elliptic curves 
yielding different key size (256, 384 and 521 bits respectively). See Table 2 for specifications of the 
used devices. 

 

 

 

 

Operation P-256 P-384 P-521 

Precomputations 100 ms 194 ms 376 ms 

Create second message 36 ms 110 ms 230 ms 

Create presentation proof 73 ms 189 ms 408 ms 

Table 3: Benchmark for the Laptop running Google Chrome. 

 

 

 

                                                        
 
14 The computations done by the User during an issuance is the sum of Precomputations and Create second 
message. For details aboud what these include, consult the U-Prove specifications. 
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Operation P-256 P-384 P-521 

Precomputations 2096 ms 5209 ms 10922 ms 

Create second message 1033 ms 3293 ms 7162 ms 

Create presentation proof 1831 ms 5675 ms 13093 ms 

Table 4: Benchmark for the Laptop running Apple Safari. 

 

 

Operation P-256 P-384 P-521 

Precomputations 101 ms 191 ms 343 ms 

Create second message 44 ms 104 ms 223 ms 

Create presentation proof 94 ms 181 ms 437 ms 

Table 5: Benchmark for the Laptop running Mozilla Firefox. 

 

 

Operation P-256 P-384 P-521 

Precomputations 1248 ms 2584 ms 4919 ms 

Create second message 556 ms 1457 ms 3098 ms 

Create presentation proof 903 ms 2537 ms 5528 ms 

Table 6: Benchmark for the Android device. 

 

 

Operation P-256 P-384 P-521 

Precomputations 10412 ms 25797 ms 59752 ms 

Create second message 5198 ms 15740 ms 39783 ms 

Create presentation proof 9068 ms 27705 ms 69396 ms 

Table 7: Benchmark for the iPhone device. 

 

From the benchmarks in the above tables, we see that the performance varies greatly from platform to 
platform. However, 9 seconds (which is the time spent on a presentation on iPhone on P-256, see 
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Table 7) would be acceptable in many use cases, so it is feasible to create an application that can 
perform acceptable on all the platforms we have tested. 

4.5  Security analysis 

Depending on the use case, using a curve with key size 256 bits, which is an acceptable security level, 
even for long-term protection, could give an acceptable performance (at most about 16 seconds for an 
issuance and 9 seconds for a presentation) but choosing higher security levels is not possible, as this 
will give a non-acceptable performance on some devices (28 seconds for a presentation on an iPhone, 
see Table 7). 

The keys and credentials are currently stored in the browser’s local storage, and are protected by a 
same-origin policy, meaning that the data is only accessible by scripts running from the same domain 
as the script that stored the data. However, the credentials are vulnerable to attacks on the devices 
permanent memory, e.g. from adversaries with physical access to the device or malware. 

The User has to get the script from this domain every time she wants to use it. This goes against the 
philosophy of privacy ABC’s, since the host of the domain now knows exactly when she is using it. 
The User should also somehow verify that she received a valid script (e.g. by checking its signature) 
each time it is downloaded. 

4.6  Future work 

Google has recently (June 3rd, 2014) released the source code to a project called End-to-End15, which 
is a Chrome extension giving the possibility to do encryption within the browser, and a part of this is a 
newly created JavaScript crypto library. Also Microsoft has released a cryptographic library in 
JavaScript recently16. As discussed in section 4.3, we had trouble finding a well supported crypto 
library, but these new libraries now seem like obvious candidates for future projects. However, 
Microsoft has also recently released an implementation of U-Prove in JavaScript17, which is good 
news since it gives a positive answer to the main question addressed in this chapter, namely that it is 
possible to use Privacy-ABC’s in real world web applications. 

                                                        
 
15 https://code.google.com/p/end-to-end/ 
16 http://research.microsoft.com/en-us/downloads/29f9385d-da4c-479a-b2ea-2a7bb335d727/ 
17 https://research.microsoft.com/en-us/downloads/1008a07e-5cc6-4a96-a6f1-4f26dadb317b/ 
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5  Conclusion 

They main task of this deliverable has been to study if it is possible to run parts of the reference 
implementation on mobile platforms. In chapter 2 we have described a prototype that does exactly this 
on the Android platform, so it must be concluded that it is indeed possible. 

It has not been possible to test the possibility of using a secure element, such as a SIM-card or TPM-
chip, since access to these is either not available through the standard APIs or do not have the specific 
functionality needed for our purpose. 

This deliverable also contains descriptions of a prototype of an application that enables a NFC-enabled 
Android device to emulate a smart card as used in the reference implementation. In some scenarios 
this might be useful, especially because the User already is carrying a smart phone with her at all time. 

A third prototype described is an implementation of the User side of Microsoft’s U-Prove in 
JavaScript, showing that is indeed feasible to use Privacy ABC technology in web applications on the 
client side. 

Possible future work includes realizing a secure element with the implementation, and a full demo of a 
web application using Privacy-ABCs technologies with some of the newly released libraries from 
Google and Microsoft. 
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